Expertise
NSERC Industrial Research Chair
for Colleges in Functional Print Manufacturing
Printing processes are in fact advanced additive manufacturing techniques which may be used to transfer active printable materials with controlled shapes and thicknesses onto flexible substrates in a standardized fashion, whether in large or small quantities.
This unique ability allows us to replace the conventional pigments in inks with active printable materials, and to use these new inks to manufacture functional printed products that can communicate, measure and process even more information.
The ICI’s research and development projects are supported by the NSERC Industrial Research Chair for Colleges in Functional print manufacturing. The scientific and technical team integrates industrial production capacity with fields such as electronics, energy or biotechnology, while being a bridge between academic results and industrial needs.
Expertise in Printability
Whether it is for conventional printed products or printed electronics, the goal of printing is to achieve a cohesive ink / process / substrate system while controlling the rheological properties of inks, the interface properties of the ink and substrate, and the mechanical properties of the printed product to attain the desired effect for the client for a given application, at a high speed and a low cost.
At the centre of this complex system, printability adresses the problems of ink transfer related to a printing process, substrate wetting and the adhesion of wet and dry ink film. The ICI’s team is prepared to solve this huge puzzle in order to accomplish the stated project mission.
Watch the video about the making of our printed NFC badges.
Ink Formulation Expertise
A commercial printing ink is optimized to provide the desired colour after being transferred consistently, at a low cost, and very high volume using a standardized printing process.
For required properties of the dry functional ink film differ wildly from the bright, colourful appearance of conventional inks. The pigments are replaced by active particles, often nanomaterials. The ink formulation becomes a balancing act in which it is important to choose the right resins, solvents and additives to achieve good compatibility between the liquid ink, the substrate using the chosen printing process while maximizing the active properties of the ink film once it is dry. In theory, there is no limitation on the type of active material which may be formulated, as long as it is safe for the work environment. For example, ICI has already formulated plant extracts, metallic nanopowders, carbon nanotubes and biological components.
Watch the video which was flexographic printed with conventional inks and then coated with a functional water-based flexographic varnish containing a low concentration of metallic nanoparticles. The presence of these nanoparticles on the surface of this map reduces the risk of spreading pathogens by eliminating them through a chemical reaction.
Expertise in Industrialization Using Advanced Manufacturing Processes
The goal of prototyping is to demonstrate the performance of a given technology. Once this is done, industrialization allows us to take into account the issues of manufacturing and supply, the life cycle of the product and the production potential using high-volume processes as well as the regulatory environment applicable to the target markets.
The transition between the prototype and the manufacturing often seems to be long and full of problems. The ICI’s expertise allows us to build a winning combination of skills in pure sciences, required to achieve specific functionalities ,and in printing process engineering, to break down the barriers of advanced manufacturing. Meanwhile, in collaboration with our partners, industrialization projects continue to move forward on issues such as marketing and regulations.
Technological Transfer: A Bridge Between Universities and the Industry
The ICI is a bridge between the graphics industry and other sectors, as well as between universities and industrial partners. Translating industrial needs into fundamental skill sets and challenges allows us to direct the work of university laboratories and to promote cooperation. Furthermore, the ICI and its research team can integrate advanced academic results into industrial projects. Finally, the rigorous analytical methods used to understand technical issues allows us to strengthen planning and strategies to improve project management. We have the best of both worlds to get to the top of the technological ladder!
Research Support Fund
The Research Support Fund is designed to help Canadian post-secondary institutions meet the costs of managing their research and maintaining a world-class research environment. Grants from the Fund can be used to :
- Maintain modern laboratory equipment and facilities;
- Provide access to up-to-date knowledge resources
- Provide administrative support and research management
- Meet regulatory and ethical standards;
- Transfer knowledge from the academic community to the public, private and not-for-profit sectors…
… to make Canada a world leader in research and development.
Collège Ahuntsic, through the involvement of its affiliate ICI in the NSERC Green Printed Electronics Strategic Network, is receiving a research support fund grant in 2024-25. 100% of the requested funds ($40,247) will be assigned to the Research Resources category, which means it will be used for salaries and benefits for employees who support federally funded research (research office, libraries, information technology department, finance department, human resources office, and purchasing department).